Jumping into Statistics: Introduction to Study Design and Statistical Analysis for Medical Research Using JMP Pro Statistical Software WINTER/SPRING 2021
DR. CYNDI GARVAN \& DR. TERRIE VASILOPOULOS

Meet the Instructors

CYNTHIA GARVAN, MA, PHD

Research Professor in Anesthesiology cgarvan@anest.ufl.edu

TERRIE VASILOPOULOS, PHD
Research Assistant Professor in Anesthesiology and Orthopaedics and Rehabilitation
tvasilopoulos@anest.ufl.edu

Course Objectives

- Review fundamentals of study design and research methodology
- Understand how to choose best statistical test for your research question
- Practice basic statistical analysis use JMP Pro Software

Course Topics

- Asking a Good Research Question
- Life Cycle of Research and Scientific Method
- Study Design
- Data types and Database Construction
- Descriptive Statistics
- Data Visualization
- Population and Sample, Probability, Statistical Inference
-How to Chose Correct Statistical Method and Run Some Analyses
- T-tests, ANOVA, Non-Parametric
- Chi-square, odds ratio, relative risk
- Regression and Correlation
- Survival Analysis
- Test Diagnostics (e.g. sensitivity, specificity, etc.)
- Comparing Statistical Modeling and Machine Learning

Categorical

 Outcomes and Risk Assessment
Chi-Square Test

Construct contingency table

Risk	Cancer	
	Present	Absent
Smoker	a	b
Non-Smoker	c	d

Compare observed proportions/frequencies in each cell to what is expected by chance
For small sample sizes (< 5 in a cell), use Fisher's exact test
Also can use a z-tests to compare 2 proportions directly (30\% vs. 10\%)

Odds Ratio

Risk	Cancer	
	Present	Absent
Smoker	\mathbf{a}	b
Non-Smoker	\mathbf{c}	\mathbf{d}

OR \rightarrow Ratio of the odds that patients with a risk factor have the disease to the odds that patients without the risk factor have the disease (likelihood, retrospective)

$$
O R=\frac{a / b}{c / d}=\frac{a \times d}{b \times c}
$$

$O R=1$, no difference in odds of outcome between groups OR > $1 \rightarrow$ 个 likelihood OR $<1 \rightarrow \downarrow$ likelihood

Relative Risk

Risk	Cancer	
	Present	Absent
Smoker	a	b
Non-Smoker	c	d

$R R \rightarrow$ Ratio of the probability of an event occurring in an exposed group to the probability of the event occurring in a comparison, non-exposed group
(risk, prospective)

$$
\boldsymbol{R} \boldsymbol{R}=\frac{\boldsymbol{a}}{\boldsymbol{c} /(\boldsymbol{a}+\boldsymbol{b})} \begin{aligned}
& \mathrm{RR}=1, \text { no difference in risk of } \\
& \text { outcome between groups } \\
& \mathrm{RR}>1 \rightarrow \uparrow \text { risk }
\end{aligned}
$$

Relative Risk vs. Odds Ratio

Relative risk vs. Odds ratio

\[

\]

More Risk Calculations: Absolute Risk Reduction

	Treatment	Postop infection	
		No	Yes
Antibiotic	75	25	
	25	75	

$$
R R=\frac{25 /(75+25)}{75 /(75+25)}=\frac{0.25}{0.75}=.33
$$

ARR \rightarrow absolute reduction in risk between two groups
$A R R=\%$ affected treatment $-\%$ affected control $A R R=25-75=50 \%$ (decrease in treatment)

More Risk Calculations: Numbers Needed to Treat

Treatment	Postop infection	
	No	Yes
Antibiotic	75	25
Control	25	75

$A R R=25-75=50 \%$ (decrease in treatment)

NNT \rightarrow number of patients who would have to received treatment/exposure for 1 of them to benefit.

$$
\begin{aligned}
& N N T=\frac{100}{A R R(\%)} \text { or } \frac{1}{A R R} \\
& N N T=\frac{100}{50(\%)}=2
\end{aligned}
$$

JMP Demo

