Jumping into Statistics: Introduction to Study Design and Statistical Analysis for Medical Research Using JMP Pro Statistical Software

WINTER/SPRING 2021

DR. CYNDI GARVAN & DR. TERRIE VASILOPOULOS

Meet the Instructors

CYNTHIA GARVAN, MA, PHD

Research Professor in Anesthesiology cgarvan@anest.ufl.edu

TERRIE VASILOPOULOS, PHD

Research Assistant Professor in Anesthesiology and Orthopaedics and Rehabilitation

tvasilopoulos@anest.ufl.edu

Course Objectives

- Review fundamentals of study design and research methodology
- Understand how to choose best statistical test for your research question
- Practice basic statistical analysis use JMP Pro Software

Course Topics

- Asking a Good Research Question
- Life Cycle of Research and Scientific Method
- Study Design
- Data types and Database Construction
- Descriptive Statistics
- Data Visualization
- Population and Sample,
 Probability, Statistical Inference

- How to Chose Correct Statistical Method and Run Some Analyses
 - T-tests, ANOVA, Non-Parametric
 - Chi-square, odds ratio, relative risk
 - Regression and Correlation
 - Survival Analysis
 - Test Diagnostics (e.g. sensitivity, specificity, etc.)
- Comparing Statistical Modeling and Machine Learning

Categorical Outcomes and Risk Assessment

Chi-Square Test

Construct contingency table

Risk	Cancer		
RISK	Present	Absent	
Smoker	а	b	
Non-Smoker	С	d	

Compare observed *proportions/frequencies* in each cell to what is expected by chance

For small sample sizes (< 5 in a cell), use <u>Fisher's exact</u>

Also can use a <u>z-tests</u> to compare 2 proportions directly (30% vs. 10%)

Odds Ratio

Risk	Cancer		
RISK	Present	Absent	
Smoker	а	b	
Non-Smoker	С	d	

 $OR \rightarrow$ Ratio of the odds that patients with a risk factor have the disease to the odds that patients without the risk factor have the disease (*likelihood, retrospective*)

$$OR = \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a \, x \, d}{b \, x \, c}$$

OR = 1, no difference in odds of outcome between groups OR > 1 \rightarrow \uparrow likelihood OR < 1 \rightarrow \downarrow likelihood

Relative Risk

Risk	Cancer		
RISK	Present	Absent	
Smoker	а	b	
Non-Smoker	С	d	

RR \rightarrow Ratio of the probability of an event occurring in an exposed group to the probability of the event occurring in a comparison, non-exposed group (*risk, prospective*)

$$RR = \frac{\frac{a}{a+b}}{\frac{c}{c+d}}$$

RR = 1, no difference in risk of outcome between groups RR > 1 \rightarrow \uparrow risk RR < 1 \rightarrow \downarrow risk

Relative Risk vs. Odds Ratio

		Dick	Cancer		
		Risk	Present	Absent	
		Smoker	а	b	
	a /	Non-Smoker	С	d	
RR =	$\frac{a}{a}$	+b)	$\mathbf{R} = \frac{a}{2}$	/ <u>b</u> _ a:	<u>x d</u>
		+ d)	$\mathbf{r} = c_{/}$	d b	х с

- Can only be used when measuring incidence (newly defined cases)
- Prospective
- Easier to interpret
- Clinical trials and cohort studies

- Commonly used in **case-control** studies and **retrospective** studies
- Calculated in logistic regression or chi-square

Relative risk vs. Odds ratio

		Risk	Car	Cancer	
		RISK	Present	Absent	
		Smoker	75 a	25 b	
		Non-Smoker	25 C	75 d	
RR =	/5/(75	+ 25)	0.75		= 3
	$\frac{75}{(75)}$	+ 25)	0.25		
O R =	$=\frac{75/25}{25/25}$		75 <i>x</i> 75	5,62	$\frac{5}{2} = 9$
<u>UN</u> –	25/	$=\frac{1}{0.33}$ or	25x25	<u> </u>	- 9
	75				

More Risk Calculations: Absolute Risk Reduction

	Treatment	Postop infection	
		No	Yes
	Antibiotic	75	25
	Control	25	75
$RR = \frac{\frac{25}{(75+25)}}{\frac{75}{(75+25)}} = \frac{0.25}{0.75} = .33$			

ARR \rightarrow absolute reduction in risk between two groups

ARR = % affected treatment -% affected control ARR = 25 - 75 = 50% (decrease in treatment)

More Risk Calculations: Numbers Needed to Treat

Treatment	Postop infection	
	No	Yes
Antibiotic	75	25
Control	25	75

ARR = 25 - 75 = 50% (decrease in treatment)

NNT \rightarrow number of patients who would have to received treatment/exposure for 1 of them to benefit.

$$NNT = \frac{100}{ARR(\%)} \text{ or } \frac{1}{ARR}$$
$$NNT = \frac{100}{50(\%)} = 2$$

JMP Demo