Jumping into Statistics: Introduction to Study Design and Statistical Analysis for Medical Research Using JMP Pro Statistical Software

WINTER/SPRING 2021

DR. CYNDI GARVAN & DR. TERRIE VASILOPOULOS

Meet the Instructors

CYNTHIA GARVAN, MA, PHD

Research Professor in Anesthesiology cgarvan@anest.ufl.edu

TERRIE VASILOPOULOS, PHD

Research Assistant Professor in Anesthesiology and Orthopaedics and Rehabilitation

tvasilopoulos@anest.ufl.edu

Course Objectives

- Review fundamentals of study design and research methodology
- Understand how to choose best statistical test for your research question
- Practice basic statistical analysis use JMP Pro Software

Course Topics

- Asking a Good Research Question
- Life Cycle of Research and Scientific Method
- Study Design
- Data types and Database Construction
- Descriptive Statistics
- Data Visualization
- Population and Sample,Probability, Statistical Inference

- How to Chose Correct Statistical Method and Run Some Analyses
 - T-tests, ANOVA, Non-Parametric
 - Chi-square, odds ratio, relative risk
 - Regression and Correlation
 - Survival Analysis
 - Test Diagnostics (e.g. sensitivity, specificity, etc.)
- Comparing Statistical Modeling and Machine Learning

Descriptive Statistics

Common descriptive statistics

Mean → sum of all values/sample size (n)

Average

Median \rightarrow middle value of all data

Quantitative

Mode→ most frequent value of data

Quantitative

Frequency→ % each value is observed in data

Qualitative (discrete as well)

Central tendency

Examining Distributions of Quantitative Data

In a perfectly symmetrical normal distribution, the mean, median, and mode are the same value

Skewness

Many common statistical tests assume your data are normal distributed, but sometimes it is not (skewed)

- Mean is more affected by skewness than median
- Can transform data (e.g. take log or square root of values)
- Or use alternative tests.

Measures of variability (spread)

Range → highest value - lowest value

Variance is mean of squared deviations (differences) from sample mean

Standard deviation (s) \rightarrow square root of variance

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

Low Standard Deviation

Mean height= 60 in, SD = 2 in (60 ± 2)

High Standard Deviation

Mean height= 60 in, SD = 5 in (60 ± 5)

Interquartile Range

25th percentile \rightarrow 1st quartile (Q1)

 50^{th} percentile \rightarrow 2nd quartile (Q2) Median

75th percentile \rightarrow 3rd quartile (Q3)

The **inter-quartile range (IQR)** is the difference between the first and third quartiles, i.e.

$$IQR = Q_3 - Q_1$$

Use Box Plot to Display Median and IQR

JMP Demo