Jumping into Statistics: Introduction to Study Design and Statistical Analysis for Medical Research Using JMP Pro Statistical Software WINTER/SPRING 2021
DR. CYNDI GARVAN \& DR. TERRIE VASILOPOULOS

Meet the Instructors

CYNTHIA GARVAN, MA, PHD

Research Professor in Anesthesiology cgarvan@anest.ufl.edu

TERRIE VASILOPOULOS, PHD
Research Assistant Professor in Anesthesiology and Orthopaedics and Rehabilitation
tvasilopoulos@anest.ufl.edu

Course Objectives

- Review fundamentals of study design and research methodology
- Understand how to choose best statistical test for your research question
- Practice basic statistical analysis use JMP Pro Software

Course Topics

- Asking a Good Research Question
- Life Cycle of Research and Scientific Method
- Study Design
- Data types and Database Construction
- Descriptive Statistics
- Data Visualization
- Population and Sample, Probability, Statistical Inference
-How to Chose Correct Statistical Method and Run Some Analyses
- T-tests, ANOVA, Non-Parametric
- Chi-square, odds ratio, relative risk
- Regression and Correlation
- Survival Analysis
- Test Diagnostics (e.g. sensitivity, specificity, etc.)
- Comparing Statistical Modeling and Machine Learning

Descriptive Statistics

Common descriptive statistics

Mean \rightarrow sum of all values/sample size (n)

- Average

Median \rightarrow middle value of all data

- Quantitative

```
Central
tendency
```

Mode \rightarrow most frequent value of data

- Quantitative

Frequency \rightarrow \% each value is observed in data

- Qualitative (discrete as well)

Examining Distributions of Quantitative Data

In a perfectly symmetrical normal distribution, the mean, median, and mode are the same value

Skewness

Many common statistical tests assume your data are normal distributed, but sometimes it is not (skewed)

- Mean is more affected by skewness than median
- Can transform data (e.g. take log or square root of values)
- Or use alternative tests

Measures of variability (spread)

Range \rightarrow highest value - lowest value
Variance is mean of squared deviations (differences) from sample mean

Standard deviation (s) \rightarrow square root of variance

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

Low Standard Deviation

Mean height $=60 \mathrm{in}, \mathrm{SD}=2$ in (60 ± 2)

High Standard Deviation

Interquartile Range

$25^{\text {th }}$ percentile $\rightarrow 1^{\text {st }}$ quartile (Q1)
$50^{\text {th }}$ percentile $\rightarrow 2^{\text {nd }}$ quartile (Q2) Median
$75^{\text {th }}$ percentile $\rightarrow 3^{\text {rd }}$ quartile (Q3)

The inter-quartile range (IQR) is the difference between the first and third quartiles, i.e.
$\operatorname{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}$

Use Box Plot to Display Median and IQR

JMP Demo

