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Course Objectives
 Review fundamentals of study design and 
research methodology

 Understand how to choose best statistical test for 
your research question

 Practice basic statistical analysis use JMP Pro 
Software



Course Topics
 Life Cycle of Research and Asking a 
Good Research Question

 Choosing the Right Study Design 
for Your Research

 Clinical Trial Design

 Populations, Samples, and 
Hypothesis Testing in Medical 
Research

 Introduction to Data Types

 Best Practices in Data Collection 
and Database Management: 
Getting Started with SAS JMP Pro

Summarizing and Visualizing Data

Statistical Methods and How to 
Choose Them

Risk Assessment Methods

Introduction to Regression and 
Correlation

Time-to-Event (Survival) Analysis

Methods for Clinical Diagnostic 
Testing



Introduction to 
Regression and 
Correlation
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Learning Objectives
Participants will be able to:

1) Distinguish between correlation and regression, 
as well as between different types of correlation 
and regression methods.

2) Interpret correlation and regression coefficients. 

3) Conduct regression and correlational analyses in 
SAS JMP Pro.



Why is this topic important?

Correlation is THE way of understanding the linear 
relationship between two numeric/ordinal variables.

Regression allows us to:

1) Understand the relationship between a single numeric 
response (i.e., outcome) variable and a set of predictor 
variables.

2) Make a predictive model which quantifies uncertainty 
of our prediction.



Overview 
Correlation and Regression

1)Correlation

2)Regression

3)Multiple Regression

4)Relationship between Correlation and Regression

5)R2: The Coefficient of Determination

6)Assumptions of Regression



1. Correlation



Correlation

Correlation is the measure of the strength and 
direction of linear association between two 
approximately normally distributed and independent 
measurements. 

Correlation is not causation, nor does it imply a 
causal relationship.

The correlation coefficient r

• ranges from ̶ 1 to +1. 
• can never be greater than 1 or less than -1
• has no units of measurement



Strength of the correlation – effect size

The absolute value of r (|r| or –r, +r ) is a rough measure of the strength 
and the “noisiness” of the relationship:  

None or very weak |r| < 0.3

Weak 0.3 <|r|  <0.5

Moderate 0.5 <|r| < 0.7

Strong |r|  > 0.7

Always report the actual value of the correlation coefficient. Do not 
merely describe correlation as low, moderate, or strong without 
numbers, and without scientifically justifying these categorizations in the 
context of the study. 



Checks to assess strength and appropriateness 
of correlation

Scatterplots are indispensable for simple visual assessments of the 
data to determine 

• if the assumption of linear association is appropriate, 

• and to show the relationship between two variables. 
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Anscombe’s Quartet: The Importance of Graphs

Anscombe’s Quartet are four graphs constructed in 
1973 by the statistician Francis Anscombe to 
demonstrate 

• the importance of graphing data before analyzing it 

• the effect of outliers and other influential 
observations on statistical properties.

RULE Always plot the data before ANY analysis.



Anscombes’ data

 Dataset 1 Dataset 2 Dataset 3 Dataset 4 

 X1 Y1 X2 Y2 X3 Y3 X4 Y4 

 10 8.04 10 9.14 10 7.46 8 6.58 

 8 6.95 8 8.14 8 6.77 8 5.76 

 13 7.58 13 8.76 13 12.74 8 7.71 

 9 8.81 9 8.77 9 7.11 8 8.84 

 11 8.33 11 9.26 11 7.81 8 8.47 

 14 9.96 14 8.1 14 8.84 8 7.04 

 6 7.24 6 6.13 6 6.08 8 5.25 

 4 4.26 4 3.1 4 5.39 8 5.56 

 12 10.84 12 9.13 12 8.15 8 7.91 

 7 4.82 7 7.26 7 6.42 8 6.89 

 5 5.68 5 4.74 5 5.73 19 12.5 

Mean 9.0 7.5 9.0 7.5 9.0 7.5 9.0 7.5 

SD 3.3 2.0 3.3 2.0 3.3 2.0 3.3 2.0 

Correlation r 0.82 0.82 0.82 0.82 

Intercept 3 3 3 3 

Slope  0.5 0.5 0.5 0.5 

 

All four datasets have identical 
summary statistics (mean, SD, 
correlation coefficient r, intercept, 
slope). 

However, scatterplot graphs of 
these data show that the 
behaviour of each dataset is quite 
different.



Anscombe's quartet

Reference: Anscombe, Francis J. (1973) Graphs in statistical analysis. American Statistician, 27, 17–21.

This graphic represents the 
four datasets defined by 
Francis Anscombe
The descriptive statistics 
(mean, variance, 
correlation and regression 
line) are the same.
The correlation of each X 
and Y pair is r = 0.82. 



Always plot your data. If you are reading a 
journal article, look for the data plots. If 
data plots are not presented, question 
how results could be affected by irregular 
patterns in the data.

KEY POINT



Pearson versus Spearman Correlation

Pearson
• Linear relationship of two 

continuous variables

• Distribution of each variable is 
normal

Spearman
• Linear relationship of two 

variables, either of which could 
be of the continuous or ordinal 
data type

• Based on data ranks

• Distribution of each variable is 
not assumed to be normal



2. Regression



Regression 

Linear regression models a straight-line relationship between a response, 
or output, variable, and one or more predictor, input, or explanatory, 
variables. 

Simple linear regression models the relationship between a single 
response and a single predictor variable

Multiple linear regression models the relationship between a single 
response and two or more predictor variables. 

Linear regression 

• quantifies the functional relationship between the response Y and 
explanatory variables X, 

• predicts or forecasts future values of the response variable Y for given 
values of the explanatory variables X.



Bivariate Continuous Data

Suppose a researcher is interested in testing if there is a relationship 
between continuous measures (X and Y). For example, let X= age and 
Y=time to recover from surgery. The data collected in this study looks 
like:

ID X Y

100 X1 Y1

101 X2 Y2

102 X3 Y3

103 X4 Y4

The Xi and Yi are both continuous data.



Scatter plot of Bivariate Numerical Data 

This scatter plot shows the graph of 8 observations 
of Y for a given values of X. There are 8 (Xi, Yi) pairs.
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The regression model is given by: 

Yi = b0 + b1Xi + ei

Y

X

Yi = b0 + b1Xi  is the model of the straight line, ei are the residuals  



Y

X

b1 is the slope (average 
rate of change in Y with 
every unit change in X)  

Understanding the Regression Model 

b0 is the Y-
intercept

(the value of Y 
when X = 0)  

ei is the residual error, the difference between the data 
point (Xi, Yi) and the regression line

X = 
0

Change in Y with 1 unit change in X

b0

1 unit change in X



Y

X

Understanding the Regression Model 

Yi = b0 + b1Xi + ei ei ~ N(0,s2) 

To understand what ei ~ N(0,s2) means, imagine that you have 
a large amount of data with an X value = Xi

X
i



Y

X

Understanding the Regression Model 

Yi = b0 + b1Xi + ei ei ~ N(0,s2) 

ei ~ N(0,s2) means that the Y data at a fixed X level (i.e., X =  Xi ) has a normal 
distribution centered at the regression line with a variance of s2.

X
i

A regression model 
assumes that the data 
have identical normal 
distributions for every 
value of X.



Y

X

Understanding the Regression Equation 

Yi = b0 + b1Xi + ei ei ~ N(0,s2) 

To find statistics to estimate b0 and b1, calculus is used to minimize the residual errors. 
This estimation method is known as the principle of least squared errors or ordinary least 
squares (OLS).

OLS minimizes all of 
the distances from 
the observed data 
to the regression 
line. The regression 
line is known as the 
line of “best fit.”



Formulas

Slope of the regression line. Intercept of the regression line.

Residual = difference between the observed value of Y 
and the value of Y which falls on the regression line 
(i.e., the predicted value of Y).



Notation

Symbol

Observed value of response variable Y

Explanatory variable X

Population parameter for intercept b0

Population parameter for slope (i.e., regression coefficient) b1

Statistic which is estimate of intercept ෢𝜷𝟎 or b0 

Statistic which is estimate  of slope (i.e., regression coefficient) ෢𝜷𝟏 or b1

Predicted value of Y from the regression line (also called Y-hat) ෠𝑌

Residual (distance between Y and ෠𝑌 ) ei

Variance of data around each fixed value of X s2



Simple Linear Regression – one predictor

The regression model of the form:
Yi = b0 + b1Xi + ei ei ~ N(0,s2)

is called a simple linear regression because there is one “X” variable and 
the X variable has the continuous data type. It is called a simple linear
regression because the parameters b0 and b1 are linear (i.e., not squared 
or cubed, etc.).



Example of Simple Regression: Resting metabolic rate and weight

BW kg RMR 

49.9 1079

50.8 1146

51.8 1115

52.6 1161

57.6 1325

61.4 1351

62.3 1402

64.9 1365

43.1 870

48.1 1372

52.2 1132

53.5 1172

55.0 1034

55.0 1155

56.0 1392

Data on resting metabolic rate (RMR, kcal/24 h) and 
body weight (kg) were obtained for 15 women. 
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RMR 
The regression of RMR on 
body weight (BW) is  

RMR = 143.1 +19.6 . BW

N = 15

body weight (kg)



Example: Resting metabolic rate and weight

Estimate SE t Stat
P-

value
Intercept 143.1 293.8 0.487 0.634

Slope 19.6 5.4 3.631 0.003

df SS MS F P-value

Regression 1 172595.29 172595.29 13.19 0.003

Residual 13 170163.65 13089.51
Total 14 342758.93

The estimates for the coefficients are :

The ANOVA is: 

R2 = 0.50  Only 50% of the variation in Y is explained by the linear model; the model 
is therefore not particularly useful

The overall F-test is 
statistically 
significant 

The intercept is not significantly 
different from zero
The slope is significantly different 
from zero
RMR increases by almost 20 kcal/day 
for every 1 kg increase in body weight



3. Multiple Regression



Multiple Regression

Multiple regression is an extension of simple linear regression. It is used 
when we want to model a continuous response or outcome variable (i.e., 
the Y variable) in terms of two or more predictor variables (X variables). 

Rule of thumb: Multiple regression should have at least 10 observations 
per variable. 



Multiple linear regression

Multiple linear regression can be used for several purposes:

1. To predict Y from several X variables. 

2. To adjust data. You are most interested in the effect of one 
particular X variable and therefore need to isolate its effects 
from other X variables. (This is also called ANCOVA, ANalysis
of COVAriance). In this model the control variables are also 
called covariates.

3. To assess interactions among multiple variables to determine 
if the effect of one depends on one or more of the other X 
variables influence. 

4. To model nonlinear data.



The equation for a multiple regression model is given below:

Yi = b0 + b1X1i + b2X2i + b3X3i … + bpXpi + ei where ei ~ N(0,s2) i = 1,…, n

Each X is a variable 
and can be of any 
data type.

Each b is a regression coefficient. 
If the test of hypothesis concludes 
that b is not zero then we have 
evidence to support a relationship 
between this X and Y.

There are “n” subjects

The ei’s are the errors. They measure the 
departure from the actual (observed) Y data 
values and the “fitted” Y values (the Y values 
predicted by the model).



Multiple regression and curvilinear relationships

Curvilinear 
relationship between 
X and Y 

Y

X

We may be able to model a curvilinear 
relationship between X and Y by squaring 
the predictor :

Yi = b0 + b1X1i + b2(X1i)
2 + ei

Example: Y = bank account balance, X = age 
Model  ($)i = b0 + b1(age)i + b2(agei)

2 + ei

This relationship is quadratic so it is modeled by a
quadratic equation

36



Multiple regression and curvilinear relationships

Curvilinear relationship between 
X and Y 

Y

X

Sometimes there is a more complex 
curvilinear relationship between X and Y. We 
can model this relationship by including an  
“X-square” term, “X-cubed” term, etc. in the 
model:

Yi = b0 + b1X1i + b2(X1i)
2 + b2(X1i)

3 + ei



Multiple regression gives us a powerful tool for the 
type of data analysis needed to address many 
complex research questions. 

KEY POINT



Multiple Regression Example

Investigators wished to obtain a regression model of patient BMI (kg/m2) as a function 
of waist circumference (WC, cm; X1) and mid-upper arm circumference (MUAC, cm; X2) 
in 86 female patients.

The model is Y = b0 + b1X1 + b2X2

The regression is BMI = -5.94 + 0.18WC + 0.59MUAC 

b0= -5.94 (95%CI -8.10,-3.77); b1 = 0.18 (95%CI 0.14, 0.22); b2 = 0.59 (95%CI 0.45, 0.74)

Diagnostics

Residual plot shows outlier Linear plots of BMI  against X1 and X2 are linear

Adapted from Bland http://www-users.york.ac.uk/~mb55/



4. Relationship between 
Correlation and Regression



Relationship between correlation and slope

r = 1

r = 0r = .6

r = .9



Relationship between correlation and slope

There is a mathematical relationship between correlation (r) and slope of regression 
line (b1):

b1 = r (sy/sx)  

Where sy is the standard deviation of the Y data and sx is the standard deviation of the 
X data. 

This relationship says that a change of one standard deviation in X corresponds to a 
change of r standard deviations in Y. When X and Y are perfectly correlated (i.e., r = 1 
or r = -1) , then a change of one standard deviation in X corresponds to a change of 
one standard deviation in Y.  As the correlation grows less strong, the predicted Y 
moves less in response to changes in X. 

Note: A test of hypothesis about r is mathematically equivalent to a test of hypothesis 
about b1. 

42



The correlation coefficient is 
mathematically equivalent to the 
slope in a regression model.

KEY POINT



5. R2: The Coefficient of 
Determination



R2: The Coefficient of Determination

The statistic R2 is proportion of variation in Y explained 
by the linear regression model fitted to the data. 

R2 = 1− ​​
Unexplained variation

Total variation

Example. R2 = 0.91: 91% of the variation in Y can be 
explained by regression on X.

In the case of simple linear regression (one X), R2 is 
equal to the correlation coefficient squared.



6. Assumptions of Regression



Assumptions for Validity of Regression Analysis

Linearity - the relationships between the predictors and the 
outcome variable should be linear.

Normality - the errors should be normally distributed.

Homogeneity of variance (homoscedasticity) - the error 
variance should be constant.

Independence - the errors associated with one observation are 
not correlated with the errors of any other observation. 

Errors in variables - predictor variables are measured without 
error. 

Model specification - the model should be properly specified 
(including all relevant variables, and excluding irrelevant 
variables)

No Collinearity - If two predictors are extremely highly 
correlated, estimates of model parameter can be biased.



Misuse of regression: extrapolation

Extrapolating a fitted regression 
beyond the range of the data 
used to obtain it can be extremely 
misleading if the relationship 
does not hold outside that range. 

Extrapolation beyond the data 
range used to fit the regression 
model will result in seriously 
biased prediction if the 
relationship does not hold. 
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Summary Tips
 Practice Correlation and Regression in JMP!



• Stuart
• Mandalorian
• Willis (dog)
• Tigger

THANK 
YOU!
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JMP Pro!

https://software.ufl.edu/


